Jendela google

Google

Sabtu, 29 September 2007

Einstein, the universe, and God

Chosen by Time magazine to be their 'Person of the Century',1 Albert Einstein2 is famous for many things (apart from his shaggy visage). His theories of special and general relativity and his formula for the equivalence of mass and energy, E = mc2, changed forever our views on time and space, light and gravity, matter and energy. He is somewhat less well-known for his remark 'God does not play dice with the universe.' But what did Einstein really mean by 'God'? Was his 'God' anything like the God of the Bible ?

ildhood influences

Although born in 1879 of German-Jewish parents, Albert was not brought up in the Jewish faith. He attended a nearby Catholic elementary school in Munich and then the local high school. A rather slow and dreamy student, Albert was bored with non-scientific subjects,3 and learned little under the harsh military-style 19th century German education system. He grew up with an aversion to discipline, and a life-long suspicion of all authority.

At age 11 he went through an intense religious phase during which he ate no pork and composed songs to God, which he sang to himself on the way to school.4

From age 12 Albert read popular books on science, taught himself algebra, geometry and calculus, and studied Immanuel Kant's anti-theistic Critique of Pure Reason. Concerning this time in his life, Albert later wrote, 'Through the reading of popularscientific books I soon reached the conviction that much in the stories of the Bible could not be true. The consequence was a positively fanatic (orgy of) [sic] freethinking coupled with the impression that youth is intentionally being deceived by the state through lies; it was a crushing impression. … It is quite clear to me that the religious paradise of youth, which was thus lost, was a first attempt to free myself from the chains of … an existence which is dominated by wishes, hopes, and primitive feelings.'4

Albert's anti-authoritarianism, and probably also his desire to escape compulsory military service at age 17, led him to renounce his German citizenship. On January 28, 1896 he became a stateless person at the age of 16. His application for Swiss citizenship was approved February 21, 1900.

Tertiary studies, fatherhood and marriage

From 1895 to 1900 Albert attended the Zurich Polytechnic in Switzerland,5 then the finest technical school in Europe. He seldom attended lectures, but spent much of his time doing his own experiments in the excellent physics laboratory, and reading about the latest advances in physics by Hertz, Helmholtz, and other pioneers in science. He also learned about revolutionary socialism from his friend, Friedrich Adler (who in 1918 achieved fame by assassinating the Prime Minister of Austria).

Albert fell in love with Mileva Maric, a Hungarian and the only woman student in his class who, though rather plain, afflicted with a limp, and not in the least flirtatious, knew enough physics to be able to have intelligent conversations with him. In 1901 he fathered an illegitimate child with her. He married Mileva in 1903, after he had secured a job as patent examiner at the Swiss Patent Office in Berne.6

In 1905, the prestigious Berlin journal Annalen der Physik published four papers written by Albert between March 17 and June 30 of that year in his spare time!7 The first, for which he received the Nobel Prize 16 years later, described how light could behave as both a wave and a stream of particles. The second, on the size of atoms, earned him a doctorate from Zurich University.8 The third, on Brownian motion, is the foundation of modern statistical mechanics, and the fourth became the basis for his Special Theory of Relativity. This was based on Albert's 'thought experiments', such as what he might or might not see if he were in a space ship travelling at the speed of light.

In 1916 Albert published 'The Foundation of the General Theory of Relativity'. This was based on more 'thought experiments' that gravity and acceleration produce identical effects, and that this is a consequence of gravity warping (distorting) both space and time. Scientists were both bedazzled and bewildered. Then the theory appeared to be confirmed during an eclipse of the sun in the West Indies, on May 29, 1919.9 The world's press started referring to Albert as 'the greatest genius on earth'.

Albert and Elsa

Albert and Mileva's marriage had gradually fallen apart and in 1914 they had separated. In 1918, divorce proceedings were set in motion, based on the adultery of Albert with his divorced cousin Elsa Löwenthal,10 who had cared for him during a period of illness. The Zurich court granted the divorce on February 14, 1919, and ordered inter alia that Albert should give the monetary reward from a Nobel Prize, if and when he should receive it,11 to Mileva.12

Albert married Elsa on June 2, 1919, but again he was unfaithful.13 He wrote that he admired a deceased friend for having lived for many years in peace and 'lasting harmony with a woman—an undertaking in which I twice failed rather disgracefully.'14

The Nobel Prize

In 1922 Albert received official news that he had been awarded the 1921 Nobel Prize for Physics for his work in theoretical physics and his photoelectric law. Relativity, still highly controversial, was specifically excluded.15

People now wrote to Albert from all over the world; some of his answers revealed his wry sense of humour. In Berlin, he received a letter from New York asking, 'Would it be reasonable to assume that it is while a person is standing on his head—or rather upside down—that he falls in love or does other foolish things?' Albert wrote, 'To fall in love is by no means the most stupid thing man does—gravitation cannot be held responsible, however.'16

On another occasion, he was asked his formula for success. He replied, 'If A is success, I should say the formula is A = X + Y + Z, X being work and Y being play.' 'And what is Z?' 'Keeping your mouth shut.'17

In 1933, after Adolf Hitler had come to power, the Nazis launched a campaign against 'Jewish science' and offered a 20,000-mark reward for Albert's assassination.18 He emigrated to the USA and settled in Princeton, New Jersey, a scientific super-celebrity, becoming a US citizen on October 1, 1940.

Albert and 'the bomb'

For most of his life Albert was a gentle pacifist. However, on August 2, 1939, after learning that German scientists were working on splitting the uranium atom, he signed a letter to President F. D. Roosevelt which stated, 'This new phenomenon would also lead to the construction of bombs,' and urged 'quick action' on the part of the United States in atomic bomb research.19

The Manhattan Project, which produced the world's first atomic bombs, got under way two years later. Albert, regarded as a security risk, was excluded from participation in this.20 After the bombs had exploded on Hiroshima and Nagasaki, he considered this letter one of his greatest mistakes.

In November 1952 Albert declined an offer by David Ben-Gurion, Prime Minister of Israel, to be that country's president.21

For most of the last 30 years of his life, Albert tried, unsuccessfully, to establish a mathematical relationship between electromagnetic forces (such as light) and gravity. His aim was to find a single formula to explain the behaviour of everything in the universe, from electrons to stars, called a Unified Field Theory. He died in his sleep on April 18, 1955, from a ruptured defect in the main abdominal artery.

Einstein and 'God'

Albert Einstein was not a Christian. He had no concept of the God of the Bible or trust in Jesus Christ as his Lord and Saviour. His views on religion and 'God' were evolutionary and pantheistic.

He wrote, 'I cannot conceive of a God who rewards and punishes his creatures, or has a will of the kind that we experience in ourselves. Neither can I nor would I want to conceive of an individual that survives his physical death; let feeble souls, from fear or absurd egoism, cherish such thoughts.'22

'The desire for guidance, love, and support prompts men to form the social or moral conception of God. … The man who is thoroughly convinced of the universal operation of the law of causation cannot for a moment entertain the idea of a being who interferes in the course of events. … A God who rewards and punishes is inconceivable to him … .'23

'During the youthful period of mankind's spiritual evolution human fantasy created gods in man's own image. … The idea of God in the religions taught at present is a sublimation of that old concept of the gods. … In their struggle for the ethical good, teachers of religion must have the stature to give up the doctrine of a personal God … .'24

Answering a Japanese scholar who asked him about 'scientific truth', Albert wrote, 'Certain it is that a conviction, akin to religious feeling, of the rationality or intelligibility of the world lies behind all scientific work of a higher order. This firm belief, a belief bound up with deep feeling, in a superior mind that reveals itself in the world of experience, represents my conception of God. In common parlance this may be described as "pantheistic" (Spinoza).'25

It is thus clear that when Albert mentioned 'God', e.g. 'God does not play dice with the universe', and 'The Lord God is subtle, but malicious he is not',26 he was referring to something like rationality in the universe. He is recorded as saying that a 'deeply emotional conviction of the presence of a superior reasoning power, which is revealed in the incomprehensible universe, forms my idea of God'.27 However, he certainly was not referring to anything like the God of the Bible, who is Creator, Lawgiver, Judge and Saviour.

Addressing Princeton Theological Seminary on May 19, 1939, Albert said, '[A] conflict arises when a religious community insists on the absolute truthfulness of all statements recorded in the Bible.'25,28

Christian apologist Dr Hugh Ross claims that, despite not believing in the biblical God, 'Einstein held unswervingly, against enormous peer pressure, to belief in a Creator.'29 However, in the normal meaning of these terms, Einstein believed no such thing (see aside below on starlight and time). Thus, Christians who inappropriately invoke Einstein in their preaching, writing or witnessing do so to the detriment of their cause.

Note: As Einstein wrote his scientific papers and most of his correspondence in German, translations used above vary slightly among his biographers.


Bagaimana mekanisme Bleaching Earth terhadap pencegahan kerusakan minyak?

Dewasa ini memang penggunaan Bleaching Earth (BE) banyak digunakan dalam aplikasi bleaching (pemucatan/penjernihan) CPO atau juga CNO dan minyak-minyak yang lainnya. Tujuan utama dari BE memang untuk menjernihkan CPO (katakanlah contohnya) dengan cara mengadsorpsi zat-zat warna dalam CPO. Dalam CPO sendiri zat warna yang biasa ditemukan adalah antosianin, klorofil, xanthofil dan beta karoten.

Proses bleaching juga bisa mencegah kerusakan minyak karena selain zat warna tadi, BE jg dapat mengadsorpsi pengotor-pengotor lain yang terdapat dalam CPO seperti sisa tandan, sejumlah kecil logam, dan pengotor hasil oksidasi minyak yang biasanya berwarna gelap. Akan tetapi, harap diingat pula, untuk CPO biasanya proses bleaching dilakukan dengan menggunakan suhu yang relatif tinggi (100-120 derajat celcius). Sudah tentu dengan suhu sedemikian tinggi dapat menyebabkan CPO menjadi teroksidasi walaupun untuk skala lab, biasanya proses oksidasi minyak bisa diminimalisasi atau bahkan dihindari dengan mengkondisikan set alat bleaching dalam kondisi vakum untuk mencegah adanya oksigen atau juga, lebih baik lagi, sebelum dilakukan proses bleaching oksigen yang ada dalam set alat bleaching diusir terlebih dahulu dengan gas nitrogen.

Proses bleaching dengan menggunakan BE jg punya kelemahan terhadap kualitas CPO karena banyak sekali zat-zat yang justru diperlukan seperti beta karoten maupun vitamin E yang ikut teradsorpsi oleh BE.. Berdasar pada pengalaman yg telah saya lakukan, ada kondisi optimum dari BE agar proses bleaching berlangsung dengan baik. Baik disini adalah warna CPO yang jernih dan kandungan zat yang diinginkan seperti beta karoten juga tidak berkurang terlalu banyak.

Untuk masalah yg terakhir, ada pertanyaan yang kadang terus menggelitik di kepala tapi sampai saat ini belum terpecahkan, bagaimana caranya agar BE yang digunakan memiliki kemampuan mengadsorpsi yang selektif, dimana hanya pengotor yang tidak diinginkan saja yang terserap sedangkan beta karoten dan vitamin E (misalnya) tidak ikut terserap?

Apa Yang Dimaksud Dengan 'Spektrum Infra-merah'

Latar belakang spektrokopi infra-merah

Bagaimana sebuah spektrum infra-merah terbentuk


Anda mungkin tahu bahwa cahaya yang bisa kita lihat itu terdiri dari gelombang elektromagnetik dengan frekwensi yang berbeda-beda, setiap frekwensi tersebut bisa dilihat sebagai warna yang berbeda. Radiasi Infra-merah juga merupakan gelombang dengan frekwensi yang berkesinambungan, hanya saja mata kita tidak bisa melihat mereka.

Jika anda menyinari sebuah senyawa organik dengan sinar infra-merah yang mempunyai frekwensi tertentu, anda akan mendapatkan bahwa beberapa frekwensi tersebut diserap oleh senyawa tersebut. Sebuah alat pendetektor yang diletakkan di sisi lain senyawa tersebut akan menunjukkan bahwa beberapa frekwensi melewati senyawa tesebut tanpa diserap sama sekali, tapi frekwensi lainnya banyak diserap.

Berapa banyak frekwensi tertentu yang melewati senyawa tersebut diukur sebagai 'persentasi transmitasi' (percentage transmittance)

Persentasi transmitasi dengan nilai 100 berarti semua frekwensi dapat melewati senyawa tersebut tanpa diserap sama sekali. Pada kenyataannya, itu tidak pernah terjadi, selalu akan ada penyerapan, walaupun kecil, mungkin transmitasi sebesar 95% adalah yang terbaik yang bisa anda peroleh.

Transmitasi sebesar 5% mempunyai arti bahwa hampir semua frekwensi tersebut diserap oleh senyawa itu. Tingginya penyerapan seperti ini akan membuat kita mengerti tentang ikatan-ikatan yang ada dalam senyawa tersebut.

Bagaimana bentuk sebuah spektrum Infra-merah

Grafik di bawah ini menunjukkan bagaimana nilai persentasi transmitasi berubah jika frekwensi dari radiasi Infra-merah yang diberikan itu dirubah.

Catatan: spektrum Infra-merah pada halaman ini dibuat berdasarkan data yang diambil dari Spectral Data Base for Organic Compounds (SDBS) di National Institute of Materials and Chemical Research di Jepang.

Ada kemungkinan bahwa kesalahan-kesalahan kecil mungkin timbul dalam proses perubahan dari data tersebut untuk digunakan dalam situs ini, tapi itu tidak akan mempengaruhi argument ini sedikitpun.

Anda harus memperhatikan bahwa besaran untuk mengukur frekwensi yang ada pada sumbu horizontal adalah bilangan gelombang, yang didefinisikan sebagai berikut:



Jangan kuatir dengan hal ini, hanya perlu diingat saja!

Hal lainnya yang perlu diperhatikan adalah pergantian skala pada sumbu horizontal bagian tengah. Anda akan melihat bahwa ada spektrum infra-merah yang mempunyai skala yang sama dari awal-akhir, ada juga spektrum yang skalanya berubah pada nilai sekitar 2000 cm-1, dan walaupun jarang, ada juga yang berubah lagi pada skala sekitar 1000 cm-1.

Hal-hal diatas bukanlah masalah yang besar, karena pada waktu kita ingin mengartikan spektrum infra-merah, anda hanya perlu hari-hati dalam membaca skala pada sumbu horizontal.

Apa yang menyebabkan beberapa frekwensi itu terserap?

Setiap frekwensi sinar (termasuk infra-merah) mempunyai energi tertentu. Apabila frekwensi tertentu diserap ketika melewati sebuah senyawa tersebut diselidiki, maka pasti energi dari frekwensi tersebut ditransfer ke senyawa tersebut.

Energi pada radiasi infra-merah sebanding dengan energi yang timbul pada getaran-getaran ikatan.

Pergerakan ikatan

Pada ikatan kovalent, atom-atom tidak disatukan oleh ikatan yang kaku, kedua atom berikatan karena kedua inti atom tersebut terikat pada pasangan elektron yang sama. Kedua inti atom tersebut dapat bergetar maju-mundur dan depan-belakang, atau menjauhi masing-masing, dalam posisi yang memungkinkan.



Energi yang terlibat pada getaran ini tergantung pada hal-hal seperti jarak ikatan tersebut, massa kedua atom. Ini berarti bahwa setiap jenis ikatan akan bergetar dengan cara yang berbeda pula, yang melibatkan energi dengan jumlah yang berbeda-beda pula.

Ikatan-ikatan selalu bergetar, tapi jika anda menyinarkan energi dengan jumlah yang tepat sama dengan yang dipunyai ikatan tersebut, anda bisa membuat getaran-getaran itu ke tingkat yang lebih tinggi. Jumlah energi yang diperlukan untuk melakukan ini tergantung pada ikatan masing-masing, karenanya setiap ikatan-ikatan yang berbeda, akan menyerap frekwensi (energi) infra-merah yang berbeda-beda pula.

Pembelokan ikatan

Tidak hanya bergerak, ikatan-ikatan juga dapat berbelok.



Sekali lagi, ikatan-ikatan akan selalu bergetar seperti ini setiap saat dan jika anda menyinari ikatan itu dengan jumlah energy yang tepat, maka anda bisa membuat getaran itu ke tingkat yang lebih tinggi. Karena energi yang terlibat pada pembelokan ini juga berbeda-beda pada setiap jenis ikatan, maka setiap jenis ikatan akan menyerap sinar infra-merah dengan frekwensi yang berbeda-beda pula untuk membuatnya meloncat ke tingkat yang lebih tinggi.

Mencoba semuanya.

Lihat lagi spektrum infra-merah sebuah n-propannol, CH3CH2CH2OH:



Pada diagram diatas, 3 contoh penyerapan itu dipilih untuk menunjukkan kepada anda getaran-getaran ikatan yang membuat penyerapan itu terjadi. Perhatikan bahwa pergerakan ikatan dan pembelokan ikatan menghasilkan lembah yang berbeda dalam spektrum tersebut.

Ahmed H. Zewail, peraih nobel yang mencerahkan proses reaksi kimia

Ahmed H. Zewail terserang demam sepanjang akhir pekan. Ketika beliau menerima telepon dari Royal Swedish Acedemy of Sciences, penyakit demamnya mendadak hilang. Siapakah Ahmed H. Zewail?

Ahmed H. Zewail adalah seorang Professor di California Institute of Technology yang mendapatkan hadiah Nobel dalam bidang Femtokimia. Beliau menemukan teknik dan kamera laser untuk memantau pergerakan atom atom dalam reaksi kimia. Kamera ini bekerja pada kecepatan femtodetik, suatu skala kecepatan dimana reaksi reaksi kimia terjadi. 1 Femtodetik adalah 10-15 detik. Penelitian Professor Zewail telah melahirkan cabang baru di bidang kimia yaitu Femtokimia.

Kamera laser hasil penemuan Professor Zewail bekerja dengan memadukan 2 sinar yang dihasilkan molekul molekul dalam sebuah ruang vakum. Laser tersebut kemudian menginjeksikan 2 sinyal. Pertama, sinyal pompa, mengeksitasi molekul ke tingkat energi yamg lebih tinggi.Kedua,sinyal sampel,mendeteksi molekul berdasarkan panjang gelombangnya. Peneliti dapat memvariasikan waktu interval antara dua pulsa untuk menetapkan berapa lama waktu yang dibutuhkan oleh molekul untuk berpindah.

Sebelum perkembangan femtokimia, kita hanya dapat berteori tentang bagaimana atom atom bertemu dan bergabung. Kamera laser hasil penemuan prof. Zewail memungkinkan para peneliti untuk mengamati reaksi reaksi kimia dalam gerak lambat. Hal ini memungkinkan para ilmuwan tersebut untuk menjawab beberapa pertanyaan penting seperti bagaimana temperatur mempengaruhi reaksi dan faktor-faktor apa saja yang mempengaruhi terjadinya suatu reaksi.

Minggu, 23 September 2007

Jabir Ibn Hayyan, bapak kimia modern

Seorang tokoh besar yang dikenal sebagai "the father of modern chemistry".
Jabir Ibn Hayyan (keturunan Arab, walaupun sebagian orang menyebutnya keturunan Persia), merupakan seorang muslim yang ahli dibidang kimia, farmasi, fisika, filosofi dan astronomi.

Jabir Ibn Hayyan (yang hidup di abad ke-7) telah mampu mengubah persepsi tentang berbagai kejadian alam yang pada saat itu dianggap sebagai sesuatu yang tidak dapat diprediksi, menjadi suatu ilmu sains yang dapat dimengerti dan dipelajari oleh manusia.

Penemuan-penemuannya di bidang kimia telah menjadi landasan dasar untuk berkembangnya ilmu kimia dan tehnik kimia modern saat ini.

Jabir Ibn Hayyan-lah yang menemukan asam klorida, asam nitrat, asam sitrat, asam asetat, tehnik distilasi dan tehnik kristalisasi. Dia juga yang menemukan larutan aqua regia (dengan menggabungkan asam klorida dan asam nitrat) untuk melarutkan emas.

Jabir Ibn Hayyan mampu mengaplikasikan pengetahuannya di bidang kimia kedalam proses pembuatan besi dan logam lainnya, serta pencegahan karat. Dia jugalah yang pertama mengaplikasikan penggunaan mangan dioksida pada pembuatan gelas kaca.

Jabir Ibn Hayyan juga pertama kali mencatat tentang pemanasan wine akan menimbulkan gas yang mudah terbakar. Hal inilah yang kemudian memberikan jalan bagi Al-Razi untuk menemukan etanol.

Jika kita mengetahui kelompok metal dan non-metal dalam penggolongan kelompok senyawa, maka lihatlah apa yang pertamakali dilakukan oleh Jabir. Dia mengajukan tiga kelompok senyawa berikut:
1) "Spirits" yang menguap ketika dipanaskan, seperti camphor, arsen dan amonium klorida.
2) "Metals" seperti emas, perak, timbal, tembaga dan besi; dan
3) "Stones" yang dapat dikonversi menjadi bentuk serbuk.

Salah satu pernyataannya yang paling terkenal adalah: "The first essential in chemistry, is that you should perform practical work and conduct experiments, for he who performs not practical work nor makes experiments will never attain the least degree of mastery."

Pada abad pertengahan, penelitian-penelitian Jabir tentang Alchemy diterjemahkan kedalam bahasa Latin, dan menjadi textbook standar untuk para ahli kimia eropa. Beberapa diantaranya adalah Kitab al-Kimya (diterjemahkan oleh Robert of Chester - 1144) dan Kitab al-Sab'een (diterjemahkan oleh Gerard of Cremona - 1187). Beberapa tulisa Jabir juga diterjemahkan oleh Marcelin Berthelot kedalam beberapa buku berjudul: Book of the Kingdom, Book of the Balances dan Book of Eastern Mercury. Beberapa istilah tehnik yang ditemukan dan digunakan oleh Jabir juga telah menjadi bagian dari kosakata ilmiah di dunia internasional, seperti istilah "Alkali", dsb.

ini dia situs kimia terlengkap di dunia

Sabtu, 22 September 2007

Kimiawan adalah Pemain di belakang Layar

Mungkin ketika seorang peserta SPMB memilih untuk masuk pilihan studi kimia tidak yakin atas pilihannya tersebut. Umumnya para siswa tersebut memilih program studi kimia sebagai pilihan cadangan dari program studi seperti kedokteran, farmasi, atupun teknik kimia. Tapi sebenarnya sadarkah kita bahwa peran ilmu kimia melalui program studi kimia itu adalah awal dari perkembangan sains. Dalam hal ini penulis ingin mengulas mengenai peranan ilmu kimia dalam bidang medis terutama dalam mengatasi kanker.

Berbicara mengenai seorang kimiawan yang mencoba menyembuhkan kanker, maka akan lebih baik jika kita mengetahui terlebih dahulu sedikit hal mengenai sel kanker. Seperti kata Tzun Zhu bahwa ”strategi awal yang baik dalam perang adalah terlebih dulu mengenal musuhmu”, kanker merupakan masalah yang terjadi pada sistem kontrol tubuh manusia. Kanker akan timbul ketika terganggunya berbagai sistem kontrol pada suatu sel. Sistem kontrol yang dimaksud ini ada dua jenis, yaitu:
(1) sistem yang mendorong pertumbuhan sel (proliferasi)
(2) sistem keamanan yang melindungi dari tumbuhnya sel yang tidak diinginkan.

Jika dikontrol secara tepat, proliferasi merupakan suatu hal yang baik bagi manusia. Lagi pula, manusia tersusun dari miliaran sel yang terus berkembang semenjak masih berupa janin hingga dewasa.

Tetapi bagaimanapun juga, ketika manusia sudah mencapai tahap dewasa, sebagian besar proses proliferasi sel akan berhenti. Contohnya adalah, pada saat ginjal anda telah berkembang hingga mencapai ukuran yang tepat, maka sel ginjal tersebut akan berhenti tumbuh (berhenti proses proliferasi). Tetapi ada juga sel-sel yang akan terus melakukan proses proliferasi. Contohnya adalah sel usus.

Pada umumnya, sistem pertumbuhan sel dalam tubuh manusia berjalan dengan normal. Tetapi, terkadang juga salah satu dari sistem ini dapat menjalani disfungsi, dan akhirnya suatu sel dapat berproliferasi dengan cara yang tidak tepat. Ketika hal tersebut terjadi, maka sel tersebut telah melakukan langkah pertamanya untuk menjadi sel kanker. Untuk melindungi dari disfungsi sistem kontrol yang dapat menyebabkan proliferasi sel, tubuh kita telah “dipersenjatai” dengan sistem keamanan sel.

Sistem pertahanan tubuh ini juga disusun dari protein yang secara umum dapat dikelompokkan menjadi:
(1) sistem yang membantu mencegah terjadinya mutasi;
(2) sistem yang “berurusan” dengan mutasi tersebut (ketika mutasi sedang terjadi pada sel).

Sebagai contohnya, sel memiliki berbagai sistem untuk memperbaiki kerusakan pada DNA untuk mencegah terjadinya mutasi. Sistem perbaikan DNA ini sangat penting sekali mengingat mutasi selalu terjadi pada DNA dalam sel tubuh. Bahkan, diperkirakan bahwa sel tubuh kita mengalami rata-rata 25 ribu proses bermutasi setiap hari. Untung saja, sistem perbaikan DNA ini bekerja non-stop, dan jika hanya terjadi kerusakan kecil saja pada DNA, sistem perbaikan tersebut akan mampu segera mengatasinya dan melakukan proses “maintenance” dengan cepat.

Namun terkadang, proses mutasi DNA juga dapat lolos dari pengawasan sistem perbaikan / maintenance sel ini (contohnya: ketika proses mutasi terjadi dengan sangat banyak melebihi proses yang biasa terjadi, dan kerja sistem perbaikan mengalami overload). Ketika hal ini terjadi, sistem keamanan kedua akan datang membantu. Sistem pertahanan kedua ini bekerja untuk memonitor sel yang bermutasi dan lolos dari pengawasan sistem pertahanan pertama. Jika proses mutasi DNA tidak terlalu parah, sistem pertahanan kedua ini akan menghentikan sel untuk berproliferasi, dan memberi waktu kepada sistem pertahanan yang pertama untuk menyelesaikan tugasnya sebelum akhirnya sistem pertahanan pertama memperbaiki sel yang ditahan oleh sistem pertahanan kedua tersebut. Tetapi jika mutasi kerusakan genetik terlalu besar, maka sistem pertahanan kedua ini akan memacu sel yang bermutasi tersebut untuk melakukan “bunuh diri”, sehingga menghilangkan kemungkinan sel tersebut untuk menjadi sel kanker.

Salah satu dari komponen penting yang bertugas sebagai sistem pertahanan ini merupakan protein yang disebut “p53?. Protein-protein yang sejenis dengan p53 yang bertugas sebagai sistem keamanan terhadap pertumbuhan sel yang tidak terkontrol disebut “tumor suppressors”. Maka jelaslah sudah bahwa p53 merupakan bagian dari sistem pertahanan yang paling penting bagi manusia. Mutasi yang terjadi pada p53 telah berhasil dideteksi pada sebagian besar sel tumor manusia.

Para ilmuwan juga telah melakukan percobaan dengan membandingkan tikus yang memiliki mutasi pada gen p53 dengan tikus yang normal. Hasil yang diperoleh adalah, tikus dengan mutasi pada gen p53 mati karena kanker sebelum tikus tersebut berumur 7 bulan. Jadi, kalau anda diminta untuk menyumbangkan salah satu gen anda - jangan berikan yang bagian gen p53.

Nah, selanjutnya kembali kepada peran seorang kimiawan itu apa dalam hal mengatasi kanker yaitu,

Pertama, seorang ahli kimia melakukan screening terhadap berbagai tumbuhan obat untuk menemukan fraksi/komponen/senyawa yang memiliki aktivitas antikanker.
Kedua, ahli kimia tersebut berperan juga dalam menentukan struktur molekul dari komponen yang memiliki aktivitas antikanker tersebut. Kemudian pada akhirnya, ahli kimia jugalah yang melakukan sintesis senyawa antikanker tersebut untuk kemudian senyawa tersebut diproduksi dalam skala besar pada industri farmasi (setelah melalui berbagai uji kelayakan), untuk digunakan sebagai obat antikanker.
Salah satu contohnya adalah senyawa FR901464 yang diisolasi dari bakteri Pseudomonas sp. No.2663 oleh grup riset Nakajima dari perusahaan farmasi Fujisawa, Jepang (dari 400 Liter sampel, diperoleh 819 mg senyawa yang diberinama FR901464).

Kemudian beberapa jalur untuk mensintesis senyawa tersebut telah ditemukan juga oleh beberapa grup riset, salah satu diantaranya adalah seperti ditunjukkan pada skema sintesis berikut:

[Koide, K, et.al; J. Am. Chem. Soc.; 2007; 129(9), 2648-2659]

Berterimakasihlah kepada para ahli kimia yang telah dapat menunjukkan struktur molekul dari suatu protein dan DNA dalam tubuh manusia. Kini dengan mengetahui struktur molekul dari suatu senyawa yang bersifat karsinogenik, setidaknya para ahli kimia telah dapat menjelaskan beberapa hal mengenai bagaimana mekanisme/hubungan terjadinya sel tumor dalam tubuh.

Jadi sekarang sudah tahukan siapa yang berada di belakang layar?
Setiap disiplin ilmu saling interface sehingga disini semuanya berperan baik seorang ahli medis, ahli biologi, ahli farmasi, dan yang pasti ahli kimia

Daftar Pustaka:
Pradipta A. 2007. Kanker dan Ahli Kimia Apa Hubungannya. http://ambarapradipta.wordpress.com/2007/03/28/kanker-dan-ahli-kimia-apa-hubungannya/

Pradipta A. 2007. Kanker dan Hubungannya Dengan Sistem Immune. http://ambarapradipta.wordpress.com/2007/04/04/kanker-dan-hubungannya-dengan-sistem-immune

Selasa, 18 September 2007

International Atomic Energy Agency

International Atomic Energy Agency (IAEA) seeks to promote the peaceful use of nuclear energy and to inhibit its use for military purposes. It was established as an autonomous organization on July 29, 1957. In 1953, U.S. President Dwight D. Eisenhower envisioned the creation of this international body to control and develop the use of atomic energy, in his "Atoms for Peace" speech before the UN General Assembly. The organization and its Director General, Mohamed ElBaradei, were jointly awarded the Nobel Peace Prize announced on 7 October 2005.

Media often refer to the IAEA as "the UN's Nuclear Watchdog". While this describes one of the Agency's roles, it is by no means the only one.

The IAEA has its headquarters in Vienna, Austria. Two "Regional Safeguards Offices" are located in Toronto, Canada; and Tokyo, Japan. The IAEA has two liaison offices, located in New York, USA; and Geneva, Switzerland. In addition, it has laboratories in Seibersdorf and Vienna, Austria; Monaco; and Trieste, Italy.

Jump to: navigation, search
International Atomic Energy Agency

The IAEA flag
The IAEA flag

IAEA members
IAEA members

Formation 1957
Headquarters Vienna, Austria
Membership 144 member states
Official languages Arabic, Chinese, English, French, Russian and Spanish
Secretary General Mohamed ElBaradei
Website http://www.iaea.org

History

IAEA headquarters since 1979, Vienna, Austria
IAEA headquarters since 1979, Vienna, Austria

The IAEA serves as an intergovernmental forum for scientific and technical co-operation in the peaceful use of nuclear technology worldwide. The IAEA's programmes encourage the development of the peaceful applications of nuclear technology, provide international safeguards against its misuse, and facilitate the application of safety measures in its use. IAEA expanded its nuclear safety efforts in response to the Chernobyl disaster in 1986.

The IAEA was headed by Hans Blix from 1981 to 1997. The current head of the organization is the Egyptian Mohamed ElBaradei. At the 49th General Conference, ElBaradei was confirmed as Director General until 2009.

The IAEA's mission is guided by the interests and needs of Member States, strategic plans and the vision embodied in the IAEA Statute (see below). Three main pillars - or areas of work - underpin the IAEA's mission: Safety and Security; Science and Technology; and Safeguards and Verification.

The Agency and Director General Mohamed ElBaradei were awarded the Nobel Peace Prize in 2005. In Dr. ElBaradei's speech he stated that only 1% of the money spent on developing new weapons would be enough to feed the entire world and that, if we hope to escape self-destruction, then nuclear weapons should have no place in our collective conscience, and no role in our security. Nobel Lecture.

[edit] Structure and function

IAEA headquarters
IAEA headquarters

The IAEA is a specialized agency of the United Nations (UN). The IAEA is not under direct control of any UN body, but reports to both the General Assembly and the Security Council. The IAEA’s structure and function is defined by its founding document: the IAEA’s Statute (see below). The IAEA has three main bodies: the Board of Governors, the General Conference, and the Secretariat.

The Board of Governors is one of two policy making bodies of the IAEA. The Board consists of 13 members designated by the outgoing Board and 22 members elected by the General Conference. The outgoing Board designates the ten members who are the most advanced in atomic energy technology and the remaining three most advanced members from any of the following areas that are not represented by the first ten: North America, Latin America, Western Europe, Eastern Europe, Africa, Middle East and South Asia, South East Asia, the Pacific, and the Far East. These members are designated for one year terms. The General Conference elects 22 members from the remaining nations to two year terms. Eleven are elected each year. The 22 elected members must also represent a stipulated geographic diversity (Statute). The current Board members are: Argentina, Australia, Austria, Belarus, Bolivia, Brazil, Canada, Chile, the People's Republic of China, Colombia, Croatia, Cuba, Egypt, Ethiopia, Finland, France, Germany, Greece, India, Indonesia, Japan, Libya, Morocco, Nigeria, Norway, Pakistan, Republic of Korea, Russian Federation, Slovenia, South Africa, Sweden, Syria, Thailand, United Kingdom, United States of America, (IAEA Board of Governors 2006–2007).

The Board, in its five yearly meetings, is responsible for making most of the policy of the IAEA. The Board makes recommendations to the General Conference on IAEA activities and budget, is responsible for publishing IAEA standards and appoints the Director General subject to General Conference approval (IAEA Fundamentals 2005). Board members each receive one vote. Budget matters require a two-thirds majority. All other matters require only a simple majority. The simple majority also has the power to stipulate issues that will thereafter require a two-thirds majority. Two-thirds of all Board members must be present to call a vote (IAEA Board of Governors 1989).

The General Conference (GC) is the IAEA’s lesser policy making body. The GC is made up of all 144 member states. The GC meets once a year, in September, to approve the actions and budgets passed on from the Board of Governors. The GC also approves the nominee for Director General and requests reports from the Board on issues in question (Statute). Each member receives one vote. Issues of budget, Statute amendment and suspension of a member’s privileges require a two- thirds majority and all other issues require a simple majority. Similar to the Board, the GC can, by simple majority, designate issues to require a two- thirds majority. The GC elects a President at each annual in order to facilitate an effective meeting. The President only serves for the duration of the session (Statute).

The main function of the GC is to serve as a forum for debate on current issues and policies. Any of the other IAEA organs, the Director General, the Board and member states can table issues to be discussed by the GC (IAEA Fundamentals 2005). This function of the GC is almost identical to the General Assembly of the United Nations.

The Secretariat is the professional and general service staff of the IAEA. The Secretariat is headed by the Director General. The Director General, currently Dr. Mohamed ElBaradei, is responsible for enforcement of the actions passed by the Board of Governors and the GC. The Director General is selected by the Board and approved by the GC for renewable four year terms. The Director General oversees six departments that do the actual work in carrying out the policies of the IAEA: Nuclear Energy, Nuclear Safety and Security, Nuclear Sciences and Applications, Safeguards, Technical Cooperation, and Management. Dr. ElBaradei, together with the IAEA as an institution, won the 2005 Nobel Peace Prize.

The IAEA budget is two-part. The regular budget funds most activities of the IAEA and is assessed to each member nation ($290 million in 2006). The Technical Cooperation Fund is funded by voluntary contributions with a general target in the $80 million range.

The process of joining the IAEA is fairly simple. A State must notify the Director General of its desire to join. The Director then submits the request to the Board for consideration. If the State is approved by the Board, the GC must then consider the State. When the State receives final approval for membership, it must then submit its signed acceptance of the IAEA’s Statute. The State is considered a member when its acceptance letter is deposited; the IAEA’s other members are subsequently notified of the new member.

The IAEA exists to pursue “safe, secure and peaceful uses of nuclear sciences and technology” (Pillars 2005). The IAEA pursues this mission with three main functions: inspections of existing nuclear facilities to ensure peaceful use, information and standards to ensure the stability of nuclear facilities, and as a hub for the sciences seeking peaceful applications of nuclear technology.

[edit] Membership

IAEA members
IAEA members

The Vatican City and many of the UN members are parties of the IAEA.

Not participating are:

Countries that have withdrawn from the IAEA are:

Countries that have not yet finalized ratification of their accession documents:

Other entities not represented at the IAEA (ineligible due to not being recognised as independent countries):

[edit] IAEA and Iran

In February 2003 Mohamed ElBaradei traveled to Iran with a team of inspectors to investigate Iran's nuclear program . In November 2003 Dr. ElBaradei reported to the Board of Governors that Iran had repeatedly and over an extended period failed to meet with its safeguards obligations, including by failing to declare its uranium enrichment program. [1]. Although he stated that there was "no evidence" that Iran was pursuing nuclear weapons, he added that he was "still not in a position to conclude that there are no undeclared nuclear materials or activities in Iran." [2] On December 18, 2003 Iran signed the Additional Protocol at the IAEA headquarters in Vienna, and pledged to act in accord with its provisions pending completion of ratification of the protocol. [3]. Iran also pledged to suspend its plutonium reprocessing and uranium enrichment-related activities, in response to a diplomatic initiative by France, Germany and the UK. [4] [5] However, Iran ended its suspension and ended implementation of the Additional Protocol on August 1, 2005. [6]

On September 24, 2005, the Board of Governors, acting under Article XII.C of the IAEA Statute, found that Iran’s failures to meet its safeguards obligations constituted non-compliance with Iran's NPT Safeguards agreement. [7] On February 4, 2006 the Board of the International Atomic Energy Agency requested the Director General to make a report concerning Iran to the United Nations Security Council following the March 2006 meeting of the IAEA Board. This resolution was decided by a vote of 27-3 (27 Board members voted for the resolution, 3, Cuba, Syria and Venezuela, voted against the resolution, and the remaining 5, Algeria, Libya, Indonesia, South Africa and Belarus, abstained). [8]

On December 23, 2006, the UN Security Council passed a resolution [9] requiring Iran to suspend its uranium enrichment activities and requiring all UN members and the IAEA to impose certain sanctions on Iran. In January 2007 IAEA Director General Mohamed ElBaradei proposed a "time out", that Iran suspend enrichment related activity and the United Nations Security Council suspend sanctions simultaneously, with the aim to revive stalled negotiations. At its March 2007 meeting, the Board of Governors agreed to curtail Technical Cooperation activities with Iran, as recommended in the Director General's February 9 report. [10]

However, on September 7, 2007, ElBaradei argued against military action, saying: "We have not seen any weaponization of their program, nor have we received any information to that effect - no smoking gun or information from intelligence. Based on the evidence we have, we do not see ... a clear and present danger that requires that you go beyond diplomacy." [11]

Ini neh Hasil pencarian Kamu baca ya..!!!!